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INTRODUCTION

The fatigue-resistance problem of aircraft structures becomes daily of
ever-increasing importance, explaining the amount of different works on
t he subject. However, it should be noted that fundamental research on the
physical Rat ure of the phenomenon has been considerably more developed
than t he efforts made in synthesizing the problem, in order that a rational
use of t he results may be made by the Design Department engineer.

In an article published in 1952 [21, Mr. W. Barrois, Chief Engineer in
the French Service Technique de l'Aéronautique, remarks: "It becomes
increasingly important to predict the fatigue resistance of an aircraft, it
being necessary to have a simple set of laws available for the design and
for conducting the tests. . . ."

These simple laws have been grouped, since the publication of the work,
by t he same aut hor in a report published in 1962, and having for subject
fatigue crack propagat ion [31, based on a st udy made in 1952 published in
1963 [1 ]. Numerous references to t his document will be made throughout
the text .

Along with t his "phenomenological theory of fatigue," to the advance-
nient, of which Mr. Barrois has so much contributed in France and about the
same t ime, the aeronautical industry has seen the development of the
reliability concept. Aircraft operating conditions becoming more and more
severe, the notion of a service life limited by wear and fatigue was neces-
sarily imposed, well before 1 he time the Design Department had at its
disposal t he reliability 1 heory in a practical form for 1 he design stage of a
new aircraft.
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At the present moment, we are therefore confronted with (a) a pheno-
menological theory of fatigue which comprises a set of results defined in the
form of laws (qualitative and quantitative) having a  deterministic character,
and (b) a reliability theory which attempts to represent the phenomena of
limited life (wear, fatigue) having a  random character.  Based on these two
theories, it would be desirable to place at the design engineer's disposal a
mathematical model allowing him to evaluate a priori the first principles
of his design while taking into account the objective, in a similar manner
to that currently done in the field of static load strength. This paper
proposes to define such a model and to present the results already obtained
in this connection.

The principle on which these two theories are based is that the deter-
ministic character of fatigue laws can only be true as a mean, as this
phenomenon is by nature extremely scattered and always random. The
link thus established also allows us to assign to the statistical parameters
a physical aspect predictable by certain laws and thus determine the
predictable laws of probability valid at the design stage, while taking into
account the different parameters regarding the definition and the result
aimed at.

We will summarily recall the main results derived front the reliability
theory. They reveal the necessity of defining a distribution law for the
length of fatigue life. However, owing to t he very definition of reliability
this law must be a function of the parameters defining the environment.
This environment being random by nature, we will recall the notions
necessary for its definition as well as their use in the model proposed.

NECESSARY RELIABILITY NOTIONS

Reliability (or safe operation) of a component is defined as the proba-
bility of its operating under given service conditions over a given time. It
can instantly be seen that tbe notion of reliability is closely linked to that
of failure and to the manner in which it is produced. It will therefore be
necessary, when speaking of fat.igue, to define exactly what is meant by
failure of a st ructure subjected to wearout fat igue.

If we suppose for the moment that t his definition be acceptable, i.e.,
G(t) (It,  the frequency function for a period of time t at the end of which
failure occurs (probability that the failure occurs in t < < t dt) the
distribution function of the law of reliabilit y will be:

F(t) = I — (1)
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where

G(t) = fo'g(t) dt

This equation is true for a single component but structures can be considered
as an assembly of individual components having each their proper relia-
bility.

Two main types of systems may be discerned from which all the others
are derived. From analogy with electrical circuits, we can discern:

Series systems, which may be defined as being the arrangement in
which the failure of a single component would lead to the failure of
the complete structure.
Parallel systems, which may be defined as being the arrangement in
which the failure of all the assembly components is necessary for the
structure to fail.

From the fatigue point of view, we can discern the notions of "safe-life"
and "fail-safe" currently used in the aeronautical field. In fact, the parallel
system corresponds to the fail-safe concept, according to a remark made
by M. Barrois, only in the case where the failure of a component does not
result in overloading the rest of the structure and its practically instan-
taneous failure. The structure is so much less fail-safe when its components
of equal strength are equally loaded. A recent experimental and theoretical
study by Eggwertz and Linsjö [7] confirms this point of view. Given the
reliability of each of the components comprising the structure, it is possible
to deduce the reliability of each of the above systems.

From the definition of the series systems, we can deduce that 1%(1),the
probability t hat no failure will occur in the structure during time t, is the
probability that no failure will occur in the first component at time t, in
the second at time t, and so on. If, in addition, the failures are supposed
to be independent, then:

F,(t) = F1(t)F2(t) . . . F(t) . . . F(t)

where F(t) is t he reliability of the it h component at time t.
If we are dealing wit h t wo redundant parallel components, the nonfailure

probability of t his type of structure is t he probability 1 hat at least one of
the components will continue to perform at time  t.

1,%(t) = F1(t) F2(t) — F1(t)F2(t)

which can also be expressed as:

1 — F,(t) = [1 — F1(t)][1 — F2(t)]



682 FOURTH CONGRESS — AERONAUTICAL SCIENCES

When a number of components are arranged in parallel, the failure of
the structure may be produced by a partial number of elementary failures;
the reliability of such a structure may be obtained by using the coefficients
derived from binomial development. If F is the reliability of each compo-
nent and G its failure probability, if there are n number of components in
parallel, we obtain:

(F G)' = 1

This expression covers all the possible combinations of failure and the
nonfailure cases of parallel components.

A question is thus set at the design stage: For a given reliability of the
complete structure, what reliability should be assigned to each component
to achieve this? In other words, how can we share the responsibility of
overall reliability between each of the components? This shareout obviously
comprises an arbitrary choice which locally would have some effect, as we
shall see in the design of the structure. The following share rule has been
proposed [41:

If the reliability is equally shared between an n number of components, each
one would have a reliability function F i(t) = [F,(t)111nfor the series system
defining the level of reliability.

We prefer balancing each component by using such indices as I

F i(t) =

where

w, -

For each level I will be such that

= + 1j ,

I „, is the state-of-the-art index.

If we express
(K,)vi

with

Z Kb,
K =  "

E ZdKbd

• =1
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lOnbi
nbc

nbi = number of components at i level

gi(t) 

Zi failure rate —

nbc = number of components at the most complex level

V i =
—T„

A = A+ ToAu

To = number of years from a given date
A =  reliability a priori of the component, taking into account the

state-of-the-art at the time the draft project was drawn up.
T,0 number of years during which the component was improved

from a given date.

I Ki is the complexity index

I Ki = 1 — exp 0, b Kpi}

If np, is the number of redundant components at level i,  Kpi =  107/„/n„

and n„ is the number of redundant components at the most complex level.

If is the environmental index

1
Ifi = 1 -

f

where f = stress index estimated as lying between 1 and 100. Failure
taking place at 100; f = 1 is the level at which there is no
failure.

I„ is t he operating time index

—

where T, = total mission time of the component
T„ = operating time at the level considered

The indices defined above are valid whatever phenomenon intervenes to
reduce life. In particular, these considerations apply to the definition of
local fatigue reliability.

where Kb, —
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In the same manner as it is necessary to define exactly the rupture at
failure, it will also be necessary to define, by applying the notions recalled
above, a method for breaking down t he structure into simple components
arranged either in a parallel or a series syst cm. Whatever t he method used,
before any analysis is made three essential questions must first be answered:

What is the mission for which a certain reliability is required?
For how long (in time or number of cycles) is this reliability required?
In which environment, under what service conditions, will the struc-
ture be operating during the mission?

PROBABILISTIC MODEL OF THE FATIGUE PHENOMENON

The preceding reasons have shown the necessity, for making use of the
reliability notion, of having a distribution function available for the fatigue
lives G (t).

Independently of the studies regarding the physical aspect of the fatigue
phenomenon, a certain number of authors have given their attention to the
representation of fatigue life by means of a known distribution function.
There have thus been proposed:

a normal logarithmic law
a distribution of extreme values
Weibull's distribution
a gamma distribution or Pearson's law type III

These all have one thing in common----they are asymmetrical. Studies made
have been mainly based on the agreement between these laws and by
experimental results gat hered from bench I est specimen failures.

It can readily be seen that between the problem set by fatigue reliability
and the results obtained in the statistical field, a certain number of ques-
tions may be asked, which must be answered if we wish to make use of a
prediction model. Among these questions we would mention the following:

Among all the proposed laws, which should preferably be the one
chosen to represent the life dist ribution?
How can one choose a priori t he value of the statistical parameters
shown in a given distribution law for a defined reliability factor?
How can one take into account the environment and the service
conditions in the parameter values?
How can one, for a given reliabilit y, a defined mission, obt am an idea
of the magnitude of t he dimensions to choose for st ructural compo-
nents, in a similar manner to that made for static loads?

The following paragraphs will attempt to give some answers in order to
conclude on a proposed working model.
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CHOICE OF MODEL PROBABILITY FUNCTIONS

It is first of all necessary to dissipate any indetermination in the choice
of a distribution function for the lengths of life. One of the difficulties in
making this choice is that the fatigue statistics are generally of insufficient
magnitude and thus that several laws appropriately chosen may be adjusted
to the experimental results. We will therefore try to use another method
for establishing the life distribution law.

Examining Forsyth's works, Barrois states in Ref. 3, p. 18, "On exam-
ining fatigue fracture in sheets subjected to repeated tensile loadings, it
will be seen that quite often crack propagation is intermittent, proceeding
forward in major steps; each step in fact represents partial static rupture
under tensile stress." This qualitative remark suggests that the crack-
forming process is a Poisson process.

If we set

K = number of elementary cracks in the break at time t (an elementary
crack corresponds to one step)

X = mean number of elementary cracks per unit time

Under these conditions:

(Xt)K _xt
—Probability 1k = K1 — e _K(t) (1)

It: is impossible to directly test such a law as the value of K cannot be
experimentally measured. We will see later how an additional assumption
allows one to obtain indirect proof.

From this law we can deduce a life-distribution law by the usual reason-
ing. In fact, according to Eq. (1) the probability that K = 0 at time t
(the probability that at time t no elementary crack will be initiated) is equal
1,o  P0(t)  =  c-x'; that is, t , ti+i are two instants where two successive
elementary cracks are initiated, If' Fi+i. If ti — t is smaller than t, the
probability that at least one elementary crack will be initiated at time
interval t is 1 — c-x', i.e.,

Probability {t1.41 — ti ,< t} = 1 — e-xt = 00(1)

G(t) is by definition the distribution law of intervals t, and its frequency
function

-xGo(t)  =  go(t); go(t) dt = Xe dt
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in which the mean is 1/X mean time interval between the initiation of two
elementary cracks.

In particular, go(t) is the distribution law at the time the first elementary
crack appears—that is, the "nucleation" time. By similar reasoning we
can calculate gi(t), . . . , g(t), giving

g(t) dt —
1

r(K) Cx (Xt)ic-'d(Xt)  (2)

As X is by definition the mean number of elementary cracks per unit time,
we can see that the paramet er for this statistical law has an obvious
physical significance.

Law (2) was tested on a certain number of statistical results correspond-
ing to the number of cycles to failure of all kinds of specimens. The results
are systematically good.

It remains to be demonst rated that this law shows some particular
reasons for allowing us to think that it is better adapted than another to
the fatigue phenomenon.

We have seen that the crack length could be considered as the sum of
the length of a number K of elementary cracks. These elementary cracks
are not all of the same dimensions and their lengths vary for two reasons:

In the sanie specimen, the dimension varies from the beginning to
the end of the process owing to the variation in local stress due to
the finite dimensions of the specimen.
For the same crack dimension already initiated, it varies from one
specimen to the other in a random manner.

We will assume that the distribution of the elementary crack dimensions
is exponential, i.e., with a probability

Probability If <E<E+ d = C d€ (3)

where E is a random variable having a mean dimensiond for the elementary
cracks.

This law can be directly tested. But the attempt has not been made as
it is possible to do this indirectly;  1 being the length of a crack, it is simple
to deduce the distribution law for 1 from Eq. (3).

We have in fact seen that, the crack was the sum of K independent
variables El, E2, . . Ekhaving as a distribution law, the expression(3), the
characteristic function being

1 

43 (1) =

1 — idt
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The characteristic function of the distribution law  1  will therefore be

1
4, (t) —

which is the characteristic function of a gamma law in the form of

f (1) dl — 1 	 1K-le-1"dl
dicF (K)

Or

1 

f(l) dl—(11d)K-le-1Idd(1/d)

UK
(4)

The crack lengths are therefore distributed according to a gamma law and
the mean length is

	

= Kd (5)

where  d  is the mean dimension of the elementary cracks and  K  the number
of mean cracks necessary for obtaining the length.

It is simple from Eq. (4) and by similar reasoning to that adopted in
deducing Eq. (2) from Eq. (1), to find the distribution law for  K  in relation
to parameter lid which is considered as given.

We obviously find a Poisson law in the form of

(11d)K —IldProbability 1k = K1 =  K c

We have therefore from this expression

K =

If we compare Eqs. (6) and (1) we can deduce, if the assumptions made in
the forming process of elementary cracks and the distribution of their
dimensions are valid, that

	

1 = (xd)t (8)

as, part icularly in expression (6) we can make  1 = 1, and  K = K  in Eq. (5).

This formula allows an indirect, test of the entire assumption.
The Sud-Aviation Central Laboratory has studied the crack propagation

of 50 notched specimens in AU-4G1 light, alloy subjected to alternating

(1 — idt)K
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tensile loads on the 10-ton Schenk machine. We thus obtain a curve for
each specimen having the usual exponential form. By studying the mean
lengths of the cracks over a number of given cycles, the points given should
approximately lie on a straight line. It is to be noted that this straight line
will not pass through the origin, the paramet er t representing a time interval
and not absolute time. Figure 1 shows the results obtained.

We have seen that parameter K is embarrassing as it is experimentally
difficult to locate. We can obtain the distribution laws for the random
variables t and 1independently from K , which can immediately be written:

	

Probability < L < 1 + dll = E (XI) 1  (I )K 1 CilddWd)
K=1 K ! (K) d
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Probability It<  T <t+ dt) = E e1d (l/d)K
1 


R-1 K ! (K)
0,0  ed (m)

The first law gives the probability for  1,  from which it is relatively easy
to calculate the mean; thus we find  1  = (Xt)  d.  It is Eq. (8) that we obtain
directly.

The second law enables us by using the statistics obtained from the
Sud-Aviation Central Laboratory to test x2 which proves that all the
assumptions made are justified and can be used as a basis for a probabilistic
model of the fatigue phenomenon. The last two laws may be written thus:

Probability fl <  L  <  dl) =
Xt Ii[2v (l/ d) xi]d (l/ d)  (9)

l/d

Probability ft <  T < t dt) = /xcti e-lid e-"/2[2 N/Xt(//d)] d(Xt) (10)

by using the Bessel modified function tables to the order of 1. We have
not as yet specifically identified the value  1,  but it should be noted that all
specific values of  1  have the same distribution laws as I, IR  being the value
of the crack length at which specimen failure occurs,  IR  is a random variable
having the sanie probability laws as  1.  In fact the probability that  1  lies
bet ween  IR  and  IR dIR  is equal to

1R+dIR

	

g (1R) d1R = f dl = [F (m1R-Fdl
IRIR

If f (i) dl is 1 he distribution of  1,  therefore

g (1R) =

It is for this reason that the different laws could be tested by taking
specimen time to failure, which corresponds to  1 = IR.Specimen failure is
only the demonst ration of a particular value of the crack dimension. We
can admit that it could be similar for a value other than that related to
failure if inst ead of ŒR (static failure stress) we impose that the crack length
does not exceed a value such that a certain stress am is not attained.

PHYSICAL INTERPRETATION OF THE STATIC PARAMETERS

If we apply Eq. (5) under t he above conditions we arrive at the relation

iRK=

This formula enables us to use a result given by W. Barrois in Ref. 3, p. 33.
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If we carry out a fatigue test under normal stress 0- up to failure in N
number of cycles, with a crack length of  1R,  the static failure stress may
then be calculated as follows:

(crR)tet =  
1R/w

where (ŒR)tet = static failure stress

w = the specimen width

If we call out 7 = 0./(un)tet the usual nondimensional ratio, the above
formula enables us to express  1R  in relation to 7, i.e.,

1R = 11)(1 — -Y) (11)

Equations (3) and (11) give

w(1 — 7) 

K — (12)

We should recall that d is the mean length of elementary cracks d and that
it is also a function of 7. It is to be remarked t hat we can give an a priori
form to the function d: d(7).  We know, in fact, t hat the number of ele-
mentary cracks is zero when 7 is zero, or better when 7 is less than a
certain value, 70.

The value of the numerator of Eq. (12) being finite for 7 = 70, i.e.,
w(1 — 70), it is necessary that d be infinite for 7 = 70 in order that K
be zero. Therefore d will be in the form of

d —  (13)
— yo

We can justify this form by the following text quoted by Barrois (Ref. 3,

p. 18): "An important point to note here is t hat the interval or spacing
between st riations increases with the applied load . ," and (p. 17) "The
striations are in fact produced by the discontinued progress of the crack
after one or more cycles." Assuming t hat we place ourselves at t he initiation
of the phenomenon, d is consequent ly the crack length (K = 1), 7 being
slightly greater than 70. Assuming that we change only 1 he material and

that we apply a constant 7 (but for this material 70 is slightly greater), in

order to initiate the first crack it is necessary to increase the load while

assuming t hat, 7 remains constant, (by increasing IV, which has no influence

on (1 as it does not depend on tlfis paramet ( r). Consequently y — 70

decreases. As we know experimentally I hat (/ increases with I he load, it is

necessary that (/ be iliversely pmport iottal to y — 70. Thus d t hereby reveals
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a specific quality of the material independently of the specimen dimensions.
The parameter m should have the dimension of one length and no longer
depend on the stress; it assumes thus a specific value for the material from
the fatigue point of view. We have, finally

K = 1'1)-(1 — 7)(7 — 70) (14)

This formula may easily be tested by establishing a certain number of
statistics at variable stress levels by means of specimens of similar material
(m, 70) and dimensions (W).

Values for K (K1,K2,K3,K4) are obtained by the maximum likelihood
method. Parameters M = w/m and ware adjusted by the method of least
squares.

We have seen that 7 =  olaR. In the study of fatigue phenomena we
usually write a = c„, ± o-.. This manner of proceeding is unsuitable for
representing a function of the variable 7, the latter not being univocal.

Although of an immediately less apparent significance we prefer taking
for the quantity

a. 

— (15)

—

of which the absolute value is at least univocal. The results are shown in
Table 1.

A second parameter remains in the distribution law: X mean number of
elementary cracks per unit time can be substituted for O = 1/X mean
initiation period of two successive elementary cracks. From Eq. (2) we have

KO = i = -N- (16)

where Of = N/K. It is relatively easy to estimate N in relation to 7. We
have written

N = A(1 — 7) e" (17)

Taking into account the value of K found previously, we can t ry to adapt
a formula expressed as

eB17

Of =   (18)
7 — yo

The following table shows t he value of the representation. The two rela-
tions, Eqs. (14) and (18), give an expression in the form of Wöhler curves
for a given specimen.
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We have seen that the life-distribution functions are obtained by the

function I(u, p) front Pearson's tables, in which

where

t hus

p = K — 1; \/p+lji=Xt

N = ft = fO-x/p + 1 A = .f0\/K A

N = D
(1 —

) e (19)
—

y is determined for a given probability.

Parameters K and X are therefore defined in relation to the specimen

dimension IV, to the magnitude of parameter 7 representing the stress

state, and to the three constants of which the value depends on the ma-

terial chosen and can be determined by preliniinary tests on any type of

specinien.

We wish to make a remark regarding the formula for calculating K
allowing extrapolation of the results derived from a specimen, to those of

a structure.

The life of a structure is a function, not of the failure of the structure,

which should never happen, but of t he crack length produced on a given

dimension. In the case of a structure 1R = lm will he maximum length of a

crack not to be exceeded for dimension 11",which is deternffned by stress

o-k = o-m and should not be exceeded while taking into account the safety

factors defined elsewhere, and corresponding to a fict it ions failure. In other
words, it will be sufficient to consider that failure of the specimen occurs

prohibiting the continuation of crack propagation. This prohibition,

instead of being physical, can simply be according to the rules without

deteriorating the fundamental phenomenon. In the estimation of 7, we can

subst it ut e am for au.

It should also be remarked 1 hat Nye can pass fmoiii I he variable stress with

constant parameters (a „,, a„) to the random stress arising, for instance,

front al mospheric turbulence. If We know the (list mibut ion for 7 it is simple

10 deduce by use of Eqs. (14) and (l8) I he (list mibution for K and X, i.e.,
f K (IK and .fx dX; these distributions expressed by means of the t WO param-

eters nt,, •y  are represented in I he dist ribut ion for 7; t he life distributions,

for example, would be expressed in relation to I hese t wo parameters by the

expression

h (t) dt = [ f g (t ; K ,X) f dK dX (20)
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This is true only for the stationary process •.e., with um constant and a-„

randomly variable.
It should be noted that the form given to 7 enables its distribution to be

readily obtained from ra; one and the other only differ in this case by a
constant factor equal to

1

OEM -

It is therefore the distribution of a„ which will govern the overall calcu-
lation, enabling /m to be determined and consequently W for a reliability
given a priori.

RANDOM STRESS

The random nature of stress is the consequence of variations in steady
permanent flight imposed by random phenomena--atmospheric turbulence,
flight, maneuvers, jet noise, landing shocks, taxiing, etc. Since clear-weather
turbulence has been encountered at high altitudes which can subject the
aircraft to random vibration conditions during one or two hours at 0.9

Mach, this reason has become of relative importance. It may be retained
as an example. Studies made by H. Press have shown that atmospheric
turbulence may be considered locally as a steady and gaussian random
phenomenon; the r standard deviation of one of the speed components
varying front one point to another. A further assumption appears to be
valid—the statistical characteristics of the turbulence in relation to an
aircraft crossing the region are not variable in time to any appreciable
extent. In other words, the Iurbulence pattern !nay be "frozen" in space.

The aircraft constitutes a linear aperiodic filter having a high time
const ant. The developed stresses resulting from t he random phenomena of
a Laplace nature will have themselves, a fortiori, this nature.

The fatigue phenomenon is characterized by parameter 7 which we have
writ I en as equal to  cr,d(om — am). III tlns paramet er  r„ represents t he abso-
lute value of the maximum variable stress. In 1he present case, it is con-
sidered as a Laplace random variable, of which it is agreed 1hat t he
distribution law of the maximum values should be sought.

We know t he work that. S. O. Rice has done on noise analysis which in
this case is entirely transposable.

Assuming I hat 1he aut ocorrelat ion function is known 4'(r) of r„. We can
show t hat a sufficient ly approxinmte expression of t he frequelicy function
of maximum values is

r „e-a"'12#"dra dt
1 [ 11,W

	

271- tko ;to
(21)
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R= um— a „,  being a constant coefficient, the frequency function  p(7)cly
in unit time can be written as:

2

(7) =
R 


1)

 „

271,1,0 L 11,0 Ye

The use of this frequency function implies the knowledge of 1,1(-/-) for a
particular point of the aircraft, knowing the initial random phenomenon
producing the random stress.

This function may be obtained by several met hods. The current theories,
whether using a gust unit, or an impulse or spect ral component, make use
of the aircraft transfer function for calculating the applied loads. This type
of formula is known and has been the subject, of numerous works. B. Etkin
in particular has summarized this in Ref. 5.

However, in the draft project stage and as a first evaluation it seems
preferable to make use of a more simple method. The design office knows
how to calculate the dynamic response of an aircraft under sinusoidal. loads.
This calculation can be extended to a random load by replacing the
periodic function by a pseudo-random function.

The method that conies to mind when we speak of periodic functions is
the use of harmonic analysis. However, by doing this we find the Fourier-
Stieltjes integral, which is valid only for damped phenomena in time and
high temporal correlation. We would obtain a correct, representation of
turbulence by using the Fourier distribution transforms in the L. Schwartz
sense. It would again be necessary to know the types of distribution to be
used. The functions that M. J. Bass has established and designated pseudo-

random seem to be easier to handle.
The problem set by M. Bass is as follows [5]. (;iven a direct image of the

functions  f(t)  having the following properties: It is the functions of time
that represent a large-scale infinite and pernianent phenomenon. As they
are very irregular in detail, we could think of representing them by dis-
continuous functions. In practice, it, is nearly always best to deal with  f(t)
as a continuous and differentiable function. This function will always be
characterized by its mean properties. The correlation function of  f(t)  at the
two instants  t  and  t h  must be a continuous function of  h  which damps
out, very quickly as  h  increases without, giving rise to any irregular oscilla-
tions. Ili Ref. 6 will be found an application of t he equations to the partial
derivatives giving a t urbulent solution to t he heat equation and Burger's
equat ion.

Based on a representation of atmospheric turbulence by a pseudo-randœn
function, we can resolve the flight equations and obtain a pseudo-random
solution representing the random variations of the applied load. It thus
constitutes to some extent a global Monte Carlo method.

(22)
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CONCLUSIONS

On condition that some experimentation is carried out, for a given
material, to determine three independent constants for the structure, the
model presented can be used to determine beforehand the dimensions
required for obtaining the given reliability of a particular structure.

It is understood that even if the calculations of material strength are
checked by strength tests of partial or complete structures before putting
them into service, it will be necessary to check by tests the fatigue behavior
of the components thus calculated.

Owing to the progressive nature of the cracks, it seems that very frequent
inspection during the initial service period of the first aircraft would enable
the gathering of statistical data in sufficient quantity to test the laws
defined above.

An initial evaluation will be obtained by tests of the type similar to those
carried out on the Caravelle. But valid knowledge cannot be obtained
before an inspection in the course of time, and sufficiently close, to allow a
test, in the mathematically statistical sense, of the distribution laws
adopt ed.
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COMMENTARY

S. EGGWERTZ  (The Aeronautical Research Institute of Sweden, Bromma,
Sweden): M. Eugène has referred to a recent report by Lindsjö and myself [7]. He
claiins that our report would confirm the view that a structure consisting of a
number of parallel members is not much of a fail-safe structure, if the failure of one
member results in a considerable rise of the loading on the remaining members,
which is usually the (Ilse.

This is not quite true—at least it is not the full story. Our testing, which is only
very preliminary, was carried out with constant amplitudes, and the members were
iwt  inspected at regular intervals. They were run to complete failure, without any
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repairs or replacements being made during the test procedure. According to my
view, a structure can never be fail-safe without inspections or an automatic warning
system. Our test specimen with six parallel members could consequently not act
as a fail-safe structure.

In our theoretical study, on the other hand, we treated the more general case
with regular inspections at intervals considerably shorter than the crack propaga-
tion time. The loading was assumed to be an exponential gust load spectrum. The
study seems to indicate rather clearly that it is quite feasible to make a structure
consisting of parallel elements, to behave as a fail-safe structure, and to obtain a
sufficiently low probability of failure, even under the conditions mentioned by
M. Eugène.

(No reply required.)




